Plasma Cutting Services

Plasma cutting

Plasma cutting is a process that is used to cut steel and other metals of different thicknesses (or sometimes other materials) using a plasma torch. In this process, an inert gas (in some units, compressed air) is blown at high speed out of a nozzle; at the same time an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to plasma. The plasma is sufficiently hot to melt the metal being cut and moves sufficiently fast to blow molten metal away from the cut.

Process

Thick Steel Plate
Freehand cut of a thick steel plate

Freehand cut of a thick steel plate

The HF type plasma cutting machine uses a high-frequency, high-voltage spark to ionize the air through the torch head and initiate an arc. These do not require the torch to be in contact with the job material when starting, and so are suitable for applications involving computer numerical controlled (CNC) cutting. More basic machines require tip contact (scratch) with the parent metal to start and then gap separation can occur similar to DC type TIG welders. These more basic type cutters are more susceptible to contact tip and shield damage on starting.

The Pilot Arc type uses a two cycle approach to producing plasma, avoiding the need for initial contact. First, a high-voltage, low current circuit is used to initialize a very small high-intensity spark within the torch body, thereby generating a small pocket of plasma gas. This is referred to as the pilot arc. The pilot arc has a return electrical path built into the torch head. The pilot arc will maintain itself until it is brought into proximity of the workpiece where it ignites the main plasma cutting arc. Plasma arcs are extremely hot and are in the range of 25,000 °C.

Plasma is an effective means of cutting thin and thick materials alike. Hand-held torches can usually cut up to 38mm thick steel plate, and stronger computer-controlled torches can cut steel up to 150 mm thick. Since plasma cutters produce a very hot and very localized “cone” to cut with, they are extremely useful for cutting sheet metal in curved or angled shapes.

History

Plasma cutting
Plasma cutting

Plasma cutting with a tilting head

Plasma cutting grew out of plasma welding in the 1960s, and emerged as a very productive way to cut sheet metal and plate in the 1980s.It had the advantages over traditional “metal against metal” cutting of producing no metal chips, giving accurate cuts, and producing a cleaner edge than oxy-fuel cutting. Early plasma cutters were large, somewhat slow and expensive and, therefore, tended to be dedicated to repeating cutting patterns in a “mass production” mode.

As with other machine tools, CNC (computer numerical control) technology was applied to plasma cutting machines in the late 1980s into the 1990s, giving plasma cutting machines greater flexibility to cut diverse shapes “on demand” based on a set of instructions that were programmed into the machine’s numerical control. These CNC plasma cutting machines were, however, generally limited to cutting patterns and parts in flat sheets of steel, using only two axes of motion (referred to as X Y cutting).

Plasma cutting
Plasma cutting

 

Leave a Reply

Your email address will not be published. Required fields are marked *